Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 870
Filtrar
1.
Int J Oral Sci ; 13(1): 30, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34588414

RESUMO

Glucosyltransferases (Gtfs) play critical roles in the etiology and pathogenesis of Streptococcus mutans (S. mutans)- mediated dental caries including early childhood caries. Gtfs enhance the biofilm formation and promotes colonization of cariogenic bacteria by generating biofilm extracellular polysaccharides (EPSs), the key virulence property in the cariogenic process. Therefore, Gtfs have become an appealing target for effective therapeutic interventions that inhibit cariogenic biofilms. Importantly, targeting Gtfs selectively impairs the S. mutans virulence without affecting S. mutans existence or the existence of other species in the oral cavity. Over the past decade, numerous Gtfs inhibitory molecules have been identified, mainly including natural and synthetic compounds and their derivatives, antibodies, and metal ions. These therapeutic agents exert their inhibitory role in inhibiting the expression gtf genes and the activities and secretion of Gtfs enzymes with a wide range of sensitivity and effectiveness. Understanding molecular mechanisms of inhibiting Gtfs will contribute to instructing drug combination strategies, which is more effective for inhibiting Gtfs than one drug or class of drugs. This review highlights our current understanding of Gtfs activities and their potential utility, and discusses challenges and opportunities for future exploration of Gtfs as a therapeutic target.


Assuntos
Biofilmes , Cárie Dentária , Glucosiltransferases/antagonistas & inibidores , Streptococcus mutans , Cárie Dentária/microbiologia , Cárie Dentária/prevenção & controle , Humanos , Streptococcus mutans/enzimologia
2.
mSphere ; 6(2)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658280

RESUMO

Virulence properties of cariogenic Streptococcus mutans depend on integral membrane proteins. Bacterial cotranslational protein trafficking involves the signal recognition particle (SRP) pathway components Ffh and FtsY, the SecYEG translocon, and YidC chaperone/insertases. Unlike Escherichia coli, S. mutans survives loss of the SRP pathway and has two yidC paralogs. This study characterized YidC1 and YidC2 interactomes to clarify respective functions alone and in concert with the SRP and/or Sec translocon. Western blots of formaldehyde cross-linked or untreated S. mutans lysates were reacted with anti-Ffh, anti-FtsY, anti-YidC1, or anti-YidC2 antibodies followed by mass spectrometry (MS) analysis of gel-shifted bands. Cross-linked lysates of wild-type and ΔyidC2 strains were reacted with anti-YidC2-coupled Dynabeads, and cocaptured proteins were identified by MS. Last, YidC1 and YidC2 C-terminal tail-captured proteins were subjected to two-dimensional (2D) difference gel electrophoresis and MS analysis. Direct interactions of putative YidC1 and YidC2 binding partners were confirmed by bacterial two-hybrid assay. Our results suggest YidC2 works preferentially with the SRP pathway, while YidC1 is preferred for SRP-independent Sec translocon-mediated translocation. YidC1 and YidC2 autonomous pathways were also apparent. Two-hybrid assay identified interactions between holotranslocon components SecYEG/YajC and YidC1. Both YidC1 and YidC2 interacted with Ffh, FtsY, and chaperones DnaK and RopA. Putative membrane-localized substrates HlyX, LemA, and SMU_591c interacted with both YidC1 and YidC2. Identification of several Rgp proteins in the YidC1 interactome suggested its involvement in bacitracin resistance, which was decreased in ΔyidC1 and SRP-deficient mutants. Collectively, YidC1 and YidC2 interactome analyses has further distinguished these paralogs in the Gram-positive bacterium S. mutansIMPORTANCEStreptococcus mutans is a prevalent oral pathogen and major causative agent of tooth decay. Many proteins that enable this bacterium to thrive in its environmental niche and cause disease are embedded in its cytoplasmic membrane. The machinery that transports proteins into bacterial membranes differs between Gram-negative and Gram-positive organisms, an important difference being the presence of multiple YidC paralogs in Gram-positive bacteria. Characterization of a protein's interactome can help define its physiological role. Herein, we characterized the interactomes of S. mutans YidC1 and YidC2. Results demonstrated substantial overlap between their interactomes but also revealed several differences in their direct protein binding partners. Membrane transport machinery components were identified in the context of a large network of proteins involved in replication, transcription, translation, and cell division/cell shape. This information contributes to our understanding of protein transport in Gram-positive bacteria in general and informs our understanding of S. mutans pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica , Transporte Proteico , Streptococcus mutans/enzimologia , Streptococcus mutans/patogenicidade
3.
J Enzyme Inhib Med Chem ; 36(1): 295-306, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33404277

RESUMO

Five series of novel carbazole derivatives containing an aminoguanidine, dihydrotriazine, thiosemicarbazide, semicarbazide or isonicotinic moiety were designed, synthesised and evaluated for their antimicrobial activities. Most of the compounds exhibited potent inhibitory activities towards different bacterial strains (including one multidrug-resistant clinical isolate) and one fungal strain with minimum inhibitory concentrations (MICs) between 0.5 and 16 µg/ml. Compounds 8f and 9d showed the most potent inhibitory activities (MICs of 0.5-2 µg/ml). Furthermore, compounds 8b, 8d, 8f, 8k, 9b and 9e with antimicrobial activities were not cytotoxic to human gastric cancer cell lines (SGC-7901 and AGS) or a normal human liver cell line (L-02). Structure-activity relationship analyses and docking studies implicated the dihydrotriazine group in increasing the antimicrobial potency and reducing the toxicity of the carbazole compounds. In vitro enzyme activity assays suggested that compound 8f binding to dihydrofolate reductase might account for the antimicrobial effect.


Assuntos
Anti-Infecciosos/síntese química , Proteínas de Bactérias/química , Carbazóis/síntese química , Inibidores Enzimáticos/síntese química , Escherichia coli/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/química , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Candida albicans/crescimento & desenvolvimento , Carbazóis/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Guanidinas/química , Hepatócitos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Ácidos Isonicotínicos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Semicarbazidas/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/enzimologia , Streptococcus mutans/crescimento & desenvolvimento , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Triazinas/química
4.
Curr Drug Discov Technol ; 18(4): 532-541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32652913

RESUMO

BACKGROUND: Streptococcus mutans and Streptococcus sanguinis are Gram-positive bacteria that cause dental caries. MurA enzyme acts as a catalyst in the formation of peptidoglycan in bacterial cell walls, making it ideal as an antibacterial target. Basil (Ocimum americanum) is an edible plant that is diverse and has been used as a herbal medicine for a long time. It has been reported that basil has a pharmacological effect as well as antibacterial activity. The purpose of this study was to identify antibacterial compounds in O. americanum and analyze their inhibition activity on MurA enzyme. METHODS: Fresh leaves from O. americanum were extracted with n-hexane and purified by a combination of column chromatography on normal and reverse phases together with in vitro bioactivity assay against S. mutans ATCC 25175 and S. sanguinis ATCC 10556, respectively, while in silico molecular docking simulation of lauric acid (1) was conducted using PyRx 0.8. RESULTS: The structure determination of antibacterial compound by spectroscopic methods resulted in an active compound lauric acid (1). The in vitro evaluation of antibacterial activity in compound 1 showed Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values of 78.13 and 156.3 ppm and 1250 and 2500 ppm against S. sanguinis and S. mutans, respectively. Further analysis and in silico evaluation determined lauric acid (1) as MurA Enzyme inhibitor. Lauric acid (1) showed a binding affinity of -5.2 Kcal/mol, which was higher than fosfomycin. CONCLUSION: Lauric acid showed the potential as a new natural antibacterial agent through MurA inhibition in bacterial cell wall biosynthesis.


Assuntos
Antibacterianos/farmacologia , Cárie Dentária/tratamento farmacológico , Ácidos Láuricos/farmacologia , Ocimum basilicum/química , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/metabolismo , Antibacterianos/isolamento & purificação , Antibacterianos/uso terapêutico , Cárie Dentária/microbiologia , Humanos , Ácidos Láuricos/isolamento & purificação , Ácidos Láuricos/uso terapêutico , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Folhas de Planta/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/enzimologia , Streptococcus sanguis/efeitos dos fármacos , Streptococcus sanguis/enzimologia
5.
Biochemistry ; 59(36): 3368-3379, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32791831

RESUMO

ClpL is a member of the HSP100 family of AAA+ chaperones that is widely present in Gram-positive but surprisingly absent in Gram-negative bacteria. ClpL is involved in various cellular processes, including stress tolerance response, long-term survival, virulence, and antibiotic resistance. ClpL is poorly characterized, and its molecular mechanisms of chaperone activity are largely unclear. Here, we biochemically characterized the ClpL protein from Streptococcus mutans, a dental pathogen, to understand its biological functions. ClpL harbors five domains: N-domain, two nucleotide binding domains (NBD-1 and NBD-2), M-domain, and C-domain. NBD-1 and NBD-2 contain distinct Walker A and B motifs for ATP binding and hydrolysis, respectively. We found that ClpL predominantly exists as a trimer in solution; however, upon ATP binding, it rapidly forms a hexameric structure. To study structure-function activity, we constructed several substitution and deletion mutants. We found that mutations in the Walker A and B motifs interfered with ATP hydrolysis and oligomerization. Similarly, deletions of N-, M-, and C-domains abolished both ATPase activity and oligomerization. Because we previously found that ClpL acts as a chaperone, we analyzed the chaperone activity. Surprisingly, we found that the NBD-2 mutants did not display any chaperone activity, indicating that ATP binding and hydrolysis by NBD-2 are essential for the chaperone. However, NBD-1 mutants showed chaperone activities, but the activities were variable depending on the nature of the mutations. Our results indicate that unlike other HSP100 family chaperones, ClpL is a novel chaperone that does not require any additional secondary chaperones for its activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Streptococcus mutans/enzimologia , Proteínas de Bactérias/genética , Endopeptidase Clp/genética , Hidrólise , Chaperonas Moleculares/genética , Streptococcus mutans/genética
6.
Bioorg Chem ; 97: 103672, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32145481

RESUMO

A novel, quick, environmentally safe, and one-pot synthesis of a series of N,N-bis(cyanoacetyl)hydrazine derivatives, bis-imino-2H-chromenes and bis-2-oxo-2H-chromene derivatives have been designed. Some selected newly synthesized compounds were investigated in vitro for their antibacterial activity. Compound 5j is the most toxic compound against Staphylococcus aureus with activity index 171%, followed by compound 15b with activity index 136% compared to standard drug ampicillin. Moreover, compound 15a is the most toxic compound against Escherichia coli with activity index 111% compared to standard drug gentamicin. Minimum inhibitory concentration (MIC) was carried out for compounds with high antibacterial activity. Compound 5j has good MIC (7.8 µg/ml) against Staphylococcus aureus while 15a has good MIC (31.25 µg/ml) against Streptococcus mutans which is better than MIC of the standard drug ampicillin (MIC = 62.5 µg/ml). Compounds 5j, 5k, 15a, 15b and 15e which have good MIC values were introduced to enzyme assay against DNA gyrase and topoisomerase IV. The results showed that compound 15a can strongly inhibit DNA gyrase and topoisomerase IV (IC50 = 27.30 and 25.52 µM respectively), compared to methotrexate as the standard drug (IC50 = 29.01 and 23.55 µM respectively). Structure-activity relationships were also discussed based on the biological and docking simulation results.


Assuntos
Antibacterianos/farmacologia , Bactérias/enzimologia , Cumarínicos/farmacologia , Hidrazinas/farmacologia , Inibidores da Topoisomerase/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Técnicas de Química Combinatória , Cumarínicos/síntese química , Cumarínicos/química , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/metabolismo , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Química Verde , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Simulação de Acoplamento Molecular , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/enzimologia , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/química
7.
Nat Prod Res ; 34(17): 2518-2523, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30600706

RESUMO

Rhodomyrtone was isolated from the leaves of Rhodomyrtus tomentosa (Aiton) Hassk grown in Vietnam using chromatographic methods. Its chemical structure was confirmed by means of spectroscopic data analysis. The pH drop measurement, enzyme activity assays and fluorescence stain were used to examine rhodomyrtone anticaries activity. It was found that rhodomyrtone suppressed acid production by Streptococcus mutans, a major cariogenic agent in human by inhibiting enzyme activities responsible for acid production and tolerance, including membrane bound enzymes F-ATPase and phosphotransferase system (PTS), as well as glycolysis enzymes glyceraldehyphosphate dehydrogenase (GAPDH) and pyruvate kinase (PK) in cytoplasm with the IC50 values of 24 µM, 19 µM, 23 µM and 28 µM, respectively. Moreover, 50 µM rhodomyrtone reduced biofilm biomass formed by S. mutans up to 59% (p < 0.05). Fluorescent images indicated that cells on the biofilms were significantly killed. Thus, rhodomyrtone is a new and potential anticaries agent against S. mutans.


Assuntos
Antibacterianos/isolamento & purificação , Cariostáticos/isolamento & purificação , Myrtaceae/química , Xantonas/isolamento & purificação , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cariostáticos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Extratos Vegetais/química , Folhas de Planta/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/enzimologia , Vietnã , Xantonas/farmacologia
8.
mSphere ; 4(5)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554721

RESUMO

Streptococcus mutans, the primary etiological agent of tooth decay, has developed multiple adhesion and virulence factors which enable it to colonize and compete with other bacteria. The putative glycosyltransferase SMU_833 is important for the virulence of S. mutans by altering the biofilm matrix composition and cariogenicity. In this study, we further characterized the smu_833 mutant by evaluating its effects on bacterial fitness. Loss of SMU_833 led to extracellular DNA-dependent bacterial aggregation. In addition, the mutant was more susceptible to oxidative stress and less competitive against H2O2 producing oral streptococci. Quantitative proteomics analysis revealed that SMU_833 deficiency resulted in the significant downregulation of 10 proteins encoded by a biosynthetic gene cluster responsible for the production of mutanobactin, a compound produced by S. mutans which helps it survive oxidative stress. Tandem affinity purification demonstrated that SMU_833 interacts with the synthetic enzymes responsible for the production of mutanobactin. Similar to the smu_833 mutant, the deletion of the mutanobactin gene cluster rendered the mutant less competitive against H2O2-producing streptococci. Our studies revealed a new link between SMU_833 virulence and mutanobactin, suggesting that SMU_833 represents a new virulent target that can be used to develop potential anticaries therapeutics.IMPORTANCEStreptococcus mutans is the major bacterium associated with dental caries. In order to thrive on the highly populated tooth surface and cause disease, S. mutans must be able to protect itself from hydrogen peroxide-producing commensal bacteria and compete effectively against the neighboring microbes. S. mutans produces mutacins, small antimicrobial peptides which help control the population of competing bacterial species. In addition, S. mutans produces a peptide called mutanobactin, which offers S. mutans protection against oxidative stress. Here, we uncover a new link between the putative glycosyltransferase SMU_833 and the mutanobactin-synthesizing protein complex through quantitative proteomic analysis and a tandem-affinity protein purification scheme. Furthermore, we show that SMU_833 mediates bacterial sensitivity to oxidative stress and bacterial ability to compete with commensal streptococci. This study has revealed a previously unknown association between SMU_833 and mutanobactin and demonstrated the importance of SMU_833 in the fitness of S. mutans.


Assuntos
Proteínas de Bactérias/metabolismo , Ligases/metabolismo , Peptídeos Cíclicos/biossíntese , Streptococcus mutans/enzimologia , Fatores de Virulência/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Ligases/genética , Família Multigênica , Proteômica , Streptococcus mutans/genética , Fatores de Virulência/genética
9.
BMC Complement Altern Med ; 19(1): 197, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375097

RESUMO

BACKGROUND: The present study was aimed to evaluate the molecular level anticaries effect of different medicinal plants against Streptococcus mutans (S.mutans) glucosyltransferases (gtf). METHODS: A total of six natural sources named as Terminalia chebula (T.chebula), Psidium guajava (P.guajava), Azadirachta indica (A.indica) and Pongamia pinnata (P.pinnata); two essential oils, clove (Syzygium aromaticum) and peppermint oil (Mentha piperita) were selected as test samples. Hydroalcoholic plant extracts and essential oils were examined for their inhibitory potential on gtf isolated from S.mutans. Polyherbal mouth wash was prepared and its effect on gtf activity was compared with commercial chlorhexidine mouth wash (5%w/v). Enzyme kinetic study was carried out in order to explore the molecular mechanism of enzyme action. RESULTS: Out of six natural sources tested, A.indica has shown maximum inhibitory effect of 91.647% on gtf and T.chebula has shown IC50 of 1.091 mg/ml which is significant when compared to standard chlorhexidine. From the final result of kinetic analysis it was found that T.chebula, P.guajava and P.pinnata have show uncompetitive inhibition where as A.indica has shown non-competitive inhibition. Surprisingly, both essential oils have shown allosteric inhibition (sigmoidal response). The polyherbal moutwash has shown significant inhibitory potential on gtf (95.936%) when compared to commercial chlorhexidine mouthwash (p < 0.05). CONCLUSION: All the tested samples have shown considerable gtf inhibitory action. Moreover polyherbal mouth wash has shown promising noncompetitive inhibitory activity against gtf and it could be the future formulation to combat dental caries.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Streptococcus mutans/enzimologia , Antibacterianos/química , Cárie Dentária/tratamento farmacológico , Cárie Dentária/microbiologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Humanos , Cinética , Antissépticos Bucais/química , Antissépticos Bucais/farmacologia , Extratos Vegetais/química , Streptococcus mutans/efeitos dos fármacos
10.
Bioprocess Biosyst Eng ; 42(10): 1681-1693, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31286218

RESUMO

The genes for dextransucrase and dextranase were cloned from the genomic regions of Leuconostoc mesenteroides MTCC 10508 and Streptococcus mutans MTCC 497, respectively. Heterologous expression of genes was performed in Escherichia coli. The purified enzyme fractions were entrapped in the alginate-pectin beads. A high immobilization yield of dextransucrase (~ 96%), and dextranase (~ 85%) was achieved. Alginate-pectin immobilization did not affect the optimum temperature and pH of the enzymes; rather, the thermal tolerance and storage stability of the enzymes was improved. The repetitive batch experiments suggested substantially good operational stability of the co-immobilized enzyme system. The synergistic catalytic reactions of alginate-pectin co-entrapped enzyme system were able to produce 7-10 g L-1 oligosaccharides of a high degree of polymerization (DP 3-9) from sucrose (~ 20 g L-1) containing feedstocks, e.g., table sugar and cane molasses. The alginate-pectin-based co-immobilized enzyme system is a useful catalytic tool to bioprocess the agro-industrial bio-resource for the production of prebiotic biomolecules.


Assuntos
Alginatos/química , Proteínas de Bactérias/química , Dextranase/química , Enzimas Imobilizadas/química , Glucosiltransferases/química , Leuconostoc mesenteroides/enzimologia , Oligossacarídeos/química , Pectinas/química , Streptococcus mutans/enzimologia , Proteínas de Bactérias/genética , Dextranase/genética , Estabilidade Enzimática , Enzimas Imobilizadas/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Glucosiltransferases/genética , Concentração de Íons de Hidrogênio , Leuconostoc mesenteroides/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Streptococcus mutans/genética
11.
Biochem Biophys Res Commun ; 516(2): 333-338, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31204053

RESUMO

Herein we report the first structure of topoisomerase I determined from the gram-positive bacterium, S. mutans. Bacterial topoisomerase I is an ATP-independent type 1A topoisomerase that uses the inherent torsional strain within hyper-negatively supercoiled DNA as an energy source for its critical function of DNA relaxation. Interest in the enzyme has gained momentum as it has proven to be essential in various bacterial organisms. In order to aid in further biochemical characterization, the apo 65-kDa amino-terminal fragment of DNA topoisomerase I from the gram-positive model organism Streptococcus mutans was crystalized and a three-dimensional structure was determined to 2.06 Šresolution via x-ray crystallography. The overall structure illustrates the four classic major domains that create the traditional topoisomerase I "lock" formation comprised of a sizable toroidal aperture atop what is considered to be a highly dynamic body. A catalytic tyrosine residue resides at the interface between two domains and is known to form a 5' phosphotyrosine DNA-enzyme intermediate during transient single-stranded cleavage required for enzymatic relaxation of hyper negative DNA supercoils. Surrounding the catalytic tyrosine residue is the remainder of the highly conserved active site. Within 5 Šfrom the catalytic center, only one dissimilar residue is observed between topoisomerase I from S. mutans and the gram-negative model organism E. coli. Immediately adjacent to the conserved active site, however, S. mutans topoisomerase I displays a somewhat unique nine residue loop extension not present in any bacterial topoisomerase I structures previously determined other than that of an extremophile.


Assuntos
DNA Topoisomerases Tipo I/química , Streptococcus mutans/enzimologia , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Modelos Moleculares
12.
Org Biomol Chem ; 17(25): 6269-6276, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31187851

RESUMO

In this work, molecular dynamics and QM/MM calculations were employed to examine the structural and catalytic features of the retaining glucosyltransferase GTF-SI from the GH70 family, which participates in the process of caries formation. Our goal was to obtain a deeper understanding of the role of R475 in the mechanism of sucrose breakage. This residue is highly conserved in the GH70 family and so far there has been no evidence that shows what could be the role of this residue in the catalysis performed by GTF-SI. In order to understand the structural role of R475 in the native enzyme, we built full enzyme models of the wild type and the mutants R475A and R475Q. These models were addressed by means of molecular dynamics simulations, which allowed the assessment of the dynamical effect of the R475 mutation on the active site. Then, representative structures were chosen for each one of the mutant models and QM/MM calculations were carried out to unravel the catalytic role of R475. Our results show that the R475 mutation increases the flexibility of the enzyme, which triggers the entrance of water molecules in the active site. In addition, QM/MM calculations indicate that R475 is able to provide a great stabilization to the carboxylate moiety of the acid/base E515, which is an essential characteristic favoring the proton transfer process that promotes the glycosidic bond breakage of sucrose.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Streptococcus mutans/enzimologia , Arginina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Glucosiltransferases/química , Glucosiltransferases/genética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Teoria Quântica , Sacarose/química , Sacarose/metabolismo
13.
ACS Chem Biol ; 14(5): 975-978, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30977993

RESUMO

We recently revealed that a previously unknown pathway for peptidoglycan biosynthesis operates in some microorganisms, including Xanthomonas oryzae. It involves two enzymes, MurD2 and MurL, which catalyze the ligation of l-glutamate (l-Glu) to UDP- N-acetylmuramic acid-l-alanine and the epimerization of the terminal l-Glu of the product, respectively. MurD2 of X. oryzae possesses a 26% identity with MurD of Escherichia coli (MurDec), which ligates d-Glu to UDP- N-acetylmuramic acid-l-alanine. To understand how X. oryzae MurD2 recognizes the isomer substrate, we estimated its structure based on that of MurDec during docking simulations. Several amino acid residues, which may be responsible for l-Glu recognition, were replaced with their corresponding amino acid residues in MurDec. Consequently, we obtained a mutated MurD2 enzyme that contained two amino acid substitutions and accepted only d-Glu as the substrate. We next tried to convert the substrate specificity of MurDec using the same strategy, but the mutant enzyme still accepted only d-Glu. Then, MurD of Streptococcus mutans (MurDsm), which possesses the key amino acid residue for l-Glu recognition identified in MurD2, was used for random screenings of mutant enzymes accepting l-Glu. We obtained a mutated MurDsm that had one amino acid substitution and slightly accepted l-Glu. A mutated MurDec possessing the corresponding one amino acid substitution also accepted l-Glu. Thus, we revealed that a few amino acid residues in MurD/MurD2 might control the acceptability of substrates with different stereochemistries.


Assuntos
Ácido Glutâmico/química , Peptídeo Sintases/química , Peptidoglicano/química , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Mutação , Peptídeo Sintases/genética , Estereoisomerismo , Streptococcus mutans/enzimologia , Especificidade por Substrato , Xanthomonas/enzimologia
14.
Arch Biochem Biophys ; 666: 46-51, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30930283

RESUMO

Streptococcus mutans, a bacterium mainly inhabiting the tooth surface, is a major pathogen of dental caries. The bacterium metabolizes sugars to produce acids, resulting in an acidic microenvironment in the dental plaque. Hence, S. mutans should possess a mechanism for surviving under acidic conditions. In the current study, we report the effects of inhibitors of Escherichia coli proton-pumping F-type ATPase (F-ATPase) on the activity of S. mutans enzyme, and the growth and survival of S. mutans under acidic conditions. Piceatannol, curcumin, and demethoxycurcumin strongly reduced the ATPase activity of S. mutans F-ATPase. Interestingly, these compounds inhibited the growth of S. mutans at pH 5.3 but not at pH 7.3. They also significantly reduced the colony-forming ability of S. mutans after incubation at pH 4.3, while showing essentially no effect at pH 7.3. These observations indicate that S. mutans is highly sensitive to F-ATPase inhibitors under acidic conditions and that F-ATPase plays an important role in acid tolerance of this bacterium.


Assuntos
Adenosina Trifosfatases/metabolismo , Concentração de Íons de Hidrogênio , Bombas de Próton/metabolismo , Streptococcus mutans/enzimologia , Streptococcus mutans/crescimento & desenvolvimento
15.
Chem Commun (Camb) ; 55(24): 3548-3551, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30843551

RESUMO

We report on a naphthalimide ratiometric fluorescent probe for the real-time sensing and imaging of pathogenic bacterial glucosyltransferases, which are associated with the development of dental caries. Using a high-throughput screening method, we identified that several natural polyphenols from green tea were GTFs inhibitors that could eventually lead to suitable oral treatments to prevent the development of dental caries.


Assuntos
Corantes Fluorescentes/química , Glucosiltransferases/análise , Naftalimidas/química , Imagem Óptica/métodos , Streptococcus mutans/enzimologia , Cárie Dentária/microbiologia , Humanos , Simulação de Acoplamento Molecular
16.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 2): 141-146, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30713166

RESUMO

Streptococcus mutans, a facultatively aerobic and Gram-positive bacterium, is the primary causative agent of dental caries and contributes to the multispecies biofilm known as dental plaque. In this study, the aromatic-amino-acid aminotransferase from Streptococcus mutans (SmAroAT) was recombinantly expressed in Escherichia coli. An effective purification protocol was established. The recombinant protein was crystallized using the hanging-drop vapor-diffusion method with PEG 3350 as the primary precipitant. The crystal structure of SmAroAT was solved at 2.2 Šresolution by the molecular-replacement method. Structural analysis indicated that the proteins of the aromatic-amino-acid aminotransferase family have conserved structural elements that might play a role in substrate binding. These results may help in obtaining a better understanding of the catabolism and biosynthesis of aromatic amino acids.


Assuntos
Streptococcus mutans/enzimologia , Transaminases/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
17.
Molecules ; 24(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696091

RESUMO

Streptococcus mutans (S. mutans) is the primary etiological agent of dental caries. The S. mutans enzyme sortase A (SrtA) is responsible for anchoring bacterial cell wall surface proteins involved in host cell attachment and biofilm formation. Thus, SrtA is an attractive target for inhibiting dental caries caused by S. mutans-associated acid fermentation. In this study, we observed that astilbin, a flavanone compound extracted from Rhizoma Smilacis Glabrae, has potent inhibitory activity against the S. mutans SrtA, with an IC50 of 7.5 µg/mL. In addition, astilbin was proven to reduce the formation of biofilm while without affecting the growth of S. mutans. The results of a molecular dynamics simulation and a mutation analysis revealed that the Arg213, Leu111, and Leu116 of SrtA are important for the interaction between SrtA and astilbin. The results of this study demonstrate the potential of using astilbin as a nonbactericidal agent to modulate pathogenicity of S. mutans by inhibiting the activity of SrtA.


Assuntos
Aminoaciltransferases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Flavonóis/farmacologia , Inibidores de Proteases/farmacologia , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/enzimologia , Aminoaciltransferases/química , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Flavonóis/química , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Mutação , Inibidores de Proteases/química , Streptococcus mutans/genética , Relação Estrutura-Atividade
18.
Mol Oral Microbiol ; 34(2): 51-63, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659765

RESUMO

The cariogenic pathogen Streptococcus mutans effectively utilizes dietary sucrose for the synthesis of exopolysaccharides (EPS), which act as a scaffold for its biofilm and thus contribute to its cariogenic pathogenicity. Dextranase (Dex), which is a type of glucanase, participates in the degradation of water-soluble glucan (WSG); however, the structural features of the EPS regulated by the dexAgene have received limited attention. Our recent studies reported novel protocols to fractionate and analyzed the structural characteristics of glucans from S mutans biofilms. In this study, we identify the role of the S mutans dexAgene in dextran-dependent aggregation in biofilm formation. Our results show that deletion of dexA (SmudexA) results in increased transcription of EPS synthesis-related genes, including gtfB, gtfD, and ftf. Interestingly, we reveal that inactivating the dexA gene may lead to elevated WSG synthesis in S mutans , which results in dysregulated cariogenicity in vivo. Furthermore, structural analysis provides new insights regarding the lack of mannose monosaccharides, especially in the WSG synthesis of the SmudexA mutants. The biofilm phenotypes that are associated with the reduced glucose monosaccharide composition in both WSG and water-insoluble glucan shift the dental biofilm to reduce the cariogenic incidence of the SmudexA mutants. Taken together, these data reveal that EPS synthesis fine-tuning by the dexA gene results in a densely packed EPS matrix that may impede the glucose metabolism of WSG, thereby leading to the lack of an energy source for the bacteria. These results highlight dexA targeting as a potentially effective tool in dental caries management.


Assuntos
Biofilmes/crescimento & desenvolvimento , Dextranase/genética , Glucanos/biossíntese , Streptococcus mutans/enzimologia , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Água/química , Animais , Cárie Dentária , Feminino , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Glucanos/química , Glucose/metabolismo , Glucosiltransferases/genética , Humanos , Concentração de Íons de Hidrogênio , Masculino , Manose/metabolismo , Modelos Animais , Mutação , Fenótipo , Ratos , Ratos Sprague-Dawley , Streptococcus mutans/crescimento & desenvolvimento , Transcriptoma , Virulência
19.
J Bacteriol ; 201(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30348833

RESUMO

The dental caries pathogen Streptococcus mutans can ferment a variety of sugars to produce organic acids. Exposure of S. mutans to certain nonmetabolizable carbohydrates, such as xylitol, impairs growth and can cause cell death. Recently, the presence of a sugar-phosphate stress in S. mutans was demonstrated using a mutant lacking 1-phosphofructokinase (FruK) that accumulates fructose-1-phosphate (F-1-P). Here, we studied an operon in S. mutans, sppRA, which was highly expressed in the fruK mutant. Biochemical characterization of a recombinant SppA protein indicated that it possessed hexose-phosphate phosphohydrolase activity, with preferences for F-1-P and, to a lesser degree, fructose-6-phosphate (F-6-P). SppA activity was stimulated by Mg2+ and Mn2+ but inhibited by NaF. SppR, a DeoR family regulator, repressed the expression of the sppRA operon to minimum levels in the absence of the fructose-derived metabolite F-1-P and likely also F-6-P. The accumulation of F-1-P, as a result of growth on fructose, not only induced sppA expression, but it significantly altered biofilm maturation through increased cell lysis and enhanced extracellular DNA release. Constitutive expression of sppA, via a plasmid or by deleting sppR, greatly alleviated fructose-induced stress in a fruK mutant, enhanced resistance to xylitol, and reversed the effects of fructose on biofilm formation. Finally, by identifying three additional putative phosphatases that are capable of promoting sugar-phosphate tolerance, we show that S. mutans is capable of mounting a sugar-phosphate stress response by modulating the levels of certain glycolytic intermediates, functions that are interconnected with the ability of the organism to manifest key virulence behaviors.IMPORTANCEStreptococcus mutans is a major etiologic agent for dental caries, primarily due to its ability to form biofilms on the tooth surface and to convert carbohydrates into organic acids. We have discovered a two-gene operon in S. mutans that regulates fructose metabolism by controlling the levels of fructose-1-phosphate, a potential signaling compound that affects bacterial behaviors. With fructose becoming increasingly common and abundant in the human diet, we reveal the ways that fructose may alter bacterial development, stress tolerance, and microbial ecology in the oral cavity to promote oral diseases.


Assuntos
Frutose-Bifosfatase/metabolismo , Frutose/metabolismo , Óperon , Proteínas Repressoras/metabolismo , Streptococcus mutans/enzimologia , Fatores de Virulência/biossíntese , Biofilmes/crescimento & desenvolvimento , Cátions Bivalentes/metabolismo , Ativadores de Enzimas , Inibidores Enzimáticos , Frutose-Bifosfatase/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Magnésio/metabolismo , Manganês/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Fluoreto de Sódio/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/metabolismo
20.
J Bacteriol ; 201(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30322852

RESUMO

Proper envelope biogenesis of Streptococcus mutans, a biofilm-forming and dental caries-causing oral pathogen, requires two paralogs (yidC1 and yidC2) of the universally conserved YidC/Oxa1/Alb3 family of membrane integral chaperones and insertases. The deletion of either paralog attenuates virulence in vivo, but the mechanisms of disruption remain unclear. Here, we determined whether the deletion of yidC affects cell surface properties, extracellular glucan production, and/or the structural organization of the exopolysaccharide (EPS) matrix and biophysical properties of S. mutans biofilm. Compared to the wild type, the ΔyidC2 mutant lacked staining with fluorescent vancomycin at the division septum, while the ΔyidC1 mutant resembled the wild type. Additionally, the deletion of either yidC1 or yidC2 resulted in less insoluble glucan synthesis but produced more soluble glucans, especially at early and mid-exponential-growth phases. Alteration of glucan synthesis by both mutants yielded biofilms with less dry weight and insoluble EPS. In particular, the deletion of yidC2 resulted in a significant reduction in biofilm biomass and pronounced defects in the spatial organization of the EPS matrix, thus modifying the three-dimensional (3D) biofilm architecture. The defective biofilm harbored smaller bacterial clusters with high cell density and less surrounding EPS than those of the wild type, which was stiffer in compression yet more susceptible to removal by shear. Together, our results indicate that the elimination of either yidC paralog results in changes to the cell envelope and glucan production that ultimately disrupts biofilm development and EPS matrix structure/composition, thereby altering the physical properties of the biofilms and facilitating their removal. YidC proteins, therefore, represent potential therapeutic targets for cariogenic biofilm control.IMPORTANCE YidC proteins are membrane-localized chaperone insertases that are universally conserved in all bacteria and are traditionally studied in the context of membrane protein insertion and assembly. Both YidC paralogs of the cariogenic pathogen Streptococcus mutans are required for proper envelope biogenesis and full virulence, indicating that these proteins may also contribute to optimal biofilm formation in streptococci. Here, we show that the deletion of either yidC results in changes to the structure and physical properties of the EPS matrix produced by S. mutans, ultimately impairing optimal biofilm development, diminishing its mechanical stability, and facilitating its removal. Importantly, the universal conservation of bacterial yidC orthologs, combined with our findings, provide a rationale for YidC as a possible drug target for antibiofilm therapies.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Fenômenos Biofísicos , Parede Celular/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Glucanos/metabolismo , Streptococcus mutans/enzimologia , Proteínas de Bactérias/genética , Matriz Extracelular de Substâncias Poliméricas/química , Deleção de Genes , Glucanos/química , Streptococcus mutans/genética , Streptococcus mutans/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA